Attachments to the VA0062189 Fact Sheet

Attachment 1 Flow Frequency Determination

Attachment 2 Facility Schematic

Attachment 3 Topographic Map

Attachment 4 Site Inspection

Attachment 5 Planning Statement

Attachment 6 Water Quality Criteria and Wasteload Allocation Determinations

Attachment 7 Effluent Data

Attachment 8 Limit Evaluations

Attachment 9 Dissolved Oxygen Model

Attachment 10 Groundwater Data

Attachment 11 Public Notice

MEMORANDUM

DEPARTMENT OF ENVIRONMENTAL QUALITY - WATER DIVISION Water Quality Assessments and Planning 629 E. Main Street P.O. Box 10009 Richmond, Virginia 23240

SUBJECT:

Flow Frequency Determination

St. Louis STP - #VA0062189

TO:

Golnaz Walker, NRO

FROM:

Paul E. Herman, P.E., WOAP

DATE:

December 14, 2000

COPIES:

Ron Gregory, Charles Martin, File

This memo supersedes my April 9, 1996, memo to James Engbert concerning the subject VPDES permit.

The St. Louis STP discharges to an unnamed tributary of Beaverdam Creek near St. Louis, VA. Stream flow frequencies are required at this site by the permit writer for the purpose of calculating effluent limitations for the VPDES permit.

At the discharge point, the receiving is depicted as intermittent on the USGS Bluemont Quadrangle topographic map. The flow frequencies for intermittent streams are 0.0 cfs for the 1Q10, 7Q10, 30Q5, high flow 1Q10, high flow 7Q10, and harmonic mean. Flow frequencies have been determined for the first perennial reach downstream of the discharge point.

The USGS conducted several flow measurements on the Goose Creek during the 1960's. The measurements were made at the U.S. Highway 15 bridge near Oatlands, VA. The measurements made by the USGS correlated very well with the same day daily mean values from the continuous record gage on the Catoctin Creek at Taylorstown, VA #01638480. The measurements and daily mean values were plotted on a logarithmic graph and a best fit line was drawn through the data points. The required flow frequencies from the reference gage were plugged into the equation for the regression line and the associated flow frequencies at the measurement site were calculated.

The flow frequencies at the discharge point were determined by using the values at the measurement site and adjusting them by proportional drainage areas. The data for the reference gage, the measurement site and the discharge point are presented below:

Catoctin Creek at Taylorstown, VA (#01638480):

Drainage Area = 89.6 mi²

1Q10 = 0.81 cfs

High Flow 1Q10 = 6.42 cfs

7Q10 = 1.02 cfs

High Flow 7Q10 = 8.59 cfs

30Q5 = 3.39 cfs

HM = 10.9 cfs

Annual Average = 102 cfs

Goose Creek at Oatlands, VA (#01643950):

Drainage Area = 276 mi^2

1Q10 = 3.37 cfs

High Flow 1Q10 = 21.2 cfs

7Q10 = 4.14 cfs

High Flow 7Q10 = 27.5 cfs

30Q5 = 12.0 cfs

HM = 34.0 cfs

Annual Average = 247 cfs

Northern VA. Region

Dept. of Env. Quality

Unnamed Tributary at beginning of perennial reach:

 $\begin{array}{c} \text{Drainage Area} = 0.59 \text{ mi}^2 \\ 1\text{Q10} = 0.007 \text{ cfs } (0.005 \text{ mgd}) & \text{High Flow } 1\text{Q10} = 0.045 \text{ cfs } (0.029 \text{ mgd}) \\ 7\text{Q10} = 0.009 \text{ cfs } (0.006 \text{ mgd}) & \text{High Flow } 7\text{Q10} = 0.059 \text{ cfs } (0.038 \text{ mgd}) \\ 30\text{Q5} = 0.026 \text{ cfs } (0.017 \text{ mgd}) & \text{HM} = 0.073 \text{ cfs } (0.047 \text{ mgd}) \\ & \text{Annual Average} = 0.528 \text{ cfs } (0.341 \text{ mgd}) \end{array}$

The high flow months are December through May. This analysis assumes there are no significant discharges, withdrawals or springs influencing the flow in the unnamed tributary upstream of the discharge point.

If there are any questions concerning this analysis, please let me know.

(-

COMMONWEALTH of VIRGINIA

DEPARTMENT OF ENVIRONMENTAL QUALITY NORTHERN REGIONAL OFFICE

Douglas W. Domenech Secretary of Natural Resources 13901 Crown Court, Woodbridge, Virginia 22193 (703) 583-3800 Fax (703) 583-3821 www.deq.virginia.gov

David K. Paylor Director

Thomas A. Faha Regional Director

August 20, 2013

Frank Stokes Community Systems Manager Loudoun Water P.O. Box 4000s Ashburn, VA20146

Re: St. Louis Wastewater Treatment Plant, Permit #VA0062189

Dear Mr. Stokes:

Attached is a copy of the Inspection Report generated from the Facility Technical Inspection conducted at St. Louis – Wastewater Treatment Plant (WWTP) on July 24, 2013. This letter is not intended as a case decision under the Virginia Administrative Process Act, Va. Code § 2.2-4000 *et seq.* (APA). Additional inspections may be conducted to confirm that the facility is in compliance with permit requirements.

Please review the enclosed report and submit in writing adequate documentation of all measures taken (including all necessary supporting documentation) to address the Request for Corrective Action no later than **September 21, 2013**.

Your response may be sent either via the US Postal Service or electronically, via E-mail. If you choose to send your response electronically, we recommend sending it as an Acrobat PDF or in a Word-compatible, write-protected format. Additional inspections may be conducted to confirm that the facility is in compliance with permit requirements.

If you have any questions or comments concerning this report, please feel free to contact me at the Northern Regional Office at (703) 583-3882 or by e-mail at Sharon.Allen@deq.virginia.gov.

Sincerely,

Sharon Allen

Environmental Specialist II

cc:

Permits / DMR File

haron Allan

Electronic copy sent:

Compliance Manager, Compliance Auditor – DEQ Les Morefield - Loudoun Water Community Systems Supervisor

DEQ WASTEWATER FACILITY INSPECTION REPORT

PREFACE VPDES/State Certification No. (RE) Issuance Date Amendment Date **Expiration Date** VA0062189 August 31, 2011 August 30, 2016 Facility Name Address Telephone Number 151 Newlin Mill Rd St. Louis Community WWTP 571-291-7700 St Louis, VA 20117 Owner Name Address Telephone Number P.O. Box 4000 **Loudoun Water** 571-291-7700 Ashburn, VA 20146 Responsible Official Title Telephone Number Les Morefield **Community Systems Supervisor** 571 291-7878 Responsible Operator Operator Cert. Class/number Telephone Number R. Allen Clemens Class III;1965007574 **** TYPE OF FACILITY: **DOMESTIC INDUSTRIAL** Federal Major Major Primary Non-federal X Minor X Minor Secondary INFLUENT CHARACTERISTICS: DESIGN: Flow MGD 0.086 Population Served ~235 Connections Served 84 BOD₅ (Feb 2013) 253 TSS (Feb 2013) 217

EFFLUENT LIN	ITTS: mg/L	unless	noted

Parameter	Min.	Avg.	Max.	Parameter	Min.	Avg.	Max.
pH, s.u.	6.0		9.0	DO	6.8		
BOD ₅	4.,,	20	30	TSS		30	45
E. coli, n/cml (geometric mean)		126		Ammonia-N		5.7	8.4
TRC (Inst tech min)	0.6			TRC (post dechlorination)		0.009	0.011
TRC (Total Contact)	1.0				And the		No. of the last of

Receiving Stream	Beaverdam Creek, UT	
Basin	Potomac River	
Discharge Point (LONG)	77° 47′ 50″	
Discharge Point (LAT)	39° 00′ 27″	

DEQ form: June 2011

Problems identified at last inspection: April 10, 2006 Corrected

1. None Noted [] []

SUMMARY - July 2013

Comments:

- > This permit requires influent monitoring once a year for TSS and BOD5, with a removal rate of at least 85% for this effluent.
- > The influent monitoring samples were last collected February 6, 2013
 - BOD5 influent = 253
 - BOD5 effluent = 3.78
 - 98.5 % removal
 - TSS influent = 328
 - TSS effluent = 2.17
 - 99.3 % removal.

Please note that the effluent samples were 4 hour composites; the influent samples were grab as per permit requirements.

- The pump station on the east side of Rt. 606 has been out of service for ~2 years. According to operators, this pump station serves 3 or houses; sewage is pumped and hauled to the manhole at the top of the hill at the WWTP once per week. I spoke to Mr. Morefield on August 13, 2013, who confirmed that the pumps and piping are in stock. The control panel is being rebuilt, and once completed all components will be installed. The project is expected to be completed by the end of October 2013.
- The plant and grounds appeared to be in good condition. The wooden walkways in each lagoon have been removed, as well as the wooden steps from the control building down to the lagoons. Vac trucks have access to distribution box D and the clarifiers. The staff is working on clearing vines and brush off of the perimeter fence. No signs of burrows around the lagoons.
- > All three ponds and the clarifiers were covered in duckweed. Duckweed did not appear to be passing over the clarifier weirs on the day of this inspection.

REQUEST for CORRECTIVE ACTION:

- Operators need to complete IDC for pH using the WTW multimeter and for TRC.
- > The town pump station has been out of service since at least June 1, 2011. Notify DEQ once the pump station is back in operation.
- > The over-hanging branches at Outfall 001 and around the monitoring wells should be trimmed to continue to allow unimpeded access. Notify DEQ once tree work is done.
- > The O&M manual must be updated to include the addition of the staff gage in distribution box D and to reflect use of one pump rather than two at Distribution Box D.
- > The backup generator is not operational. While a backup generator is not currently required under the reliability class for this WWTP, the generator on site should be maintained in working order.
- The telephone landline to the control building is not currently working. While operators have cell phone with them, cell service can be spotty. DEQ recommends that the land line be returned to service and available in case of emergency,

Please Note:

The convention for identifying laboratory methods used for compliance purposes has changed under the 40 CFR Part 136 Method Rules Update in published in May 2012. Analytical methods in Standard Methods must now be identified by the method's approved date, rather than by an edition number.

Example: Rather than referencing pH as SM 18th edition, 4500-H+ B, the proper reference for the current approved method is SM 4500 - H⁺B-2000. Please note that pH methods published in Standard Methods earlier than 2000 (SM 21st edition) will no longer be acceptable for compliance purposes.

The Virginia Division of Consolidated Laboratory Services Environmental Laboratory Certification Program Technical Assistance Document published April 2013 states "All laboratory documentation and reported data must be MUR-compliance by February 1, 2014." This requirement is being applied to field analyses as well as to laboratory analyses.

Virginia Department of Environmental Quality

FOCUSED CEI TECH/LAB INSPECTION REPORT

FACILITY NAM	ME: St. Louis Com	munity WWTP	INSPECTION DATE:	July 24, 201	L3
			INSPECTOR	S. Allen	
PERMIT No.:	VA006218	19	REPORT DATE:	July 16, 20	13
TYPE OF			TIME OF INSPECTION:	Arrival	Departure
FACILITY:	Municipal	☐ Major	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1100	1310
	☐ Industrial	Minor Minor	TOTAL TIME SPENT		
	┌ Federal	□ Small Minor	(including prep & travel)	20 h	ours
	ГНР Г LP				
PHOTOGRAPH	IS:	□ No	UNANNOUNCED INSPECTION	ON? Ye	es 🔽 No
REVIEWED BY	Elm		:/19/13		
PRESENT DUR	ING INSPECTION	: Charlie Tri	plet, Allan Clemens – Loudou	un Water	

TECHNICAL INSPECTION

1.	Has there been any new construction?	I	
	 If so, were plans and specifications approved? 	☐ Yes	₩ No
	Comments:	1 Tes	14 140
2.	Is the Operations and Maintenance Manual approved and up-to-date?	▼ Yes	ΓNο
	<u>Comments:</u>	14 163	1 110
3.	Are the Permit and/or Operation and Maintenance Manual specified licensed operator	▼ Yes	ΓNo
	requirements being met?	14 163	1 140
	<u>Comments:</u>		
4.	Are the Permit and/or Operation and Maintenance Manual specified operator staffing	▼ Yes	ΓNο
	requirements being met?	J. 103	1 110
	<u>Comments</u> :		
5.	Is there an established and adequate program for training personnel?	▼ Yes	Г No
	<u>Comments</u> :		7 110
6.	Are preventive maintenance task schedules being met?	▼ Yes	□ No
	Comments:		
7.	Does the plant experience any organic or hydraulic overloading?	Г Yes	▼ No
	<u>Comments:</u>		
8.	Have there been any bypassing or overflows since the last inspection?	☐ Yes	▼ No
	<u>Comments:</u>		
9.	Is the standby generator (including power transfer switch) operational and exercised	☐ Yes	₩ No
	regularly?		
- 10	Comments: The backup generator is out of service.		
10.	Is the plant alarm system operational and tested regularly?	┌ Yes	Г No
	Comments: There are no alarms at the WWTP. Plant is required to meet class		0 000000
	II reliability.		

Permit #	VA0062189
FCIIIIL#	AMODOSTOS

TECHNICAL INSPECTION

11. Is sludge disposed of in accordance with the approved sludge management plan? Comments:	▼ Yes	□ No
12. Is septage received?	T Yes	PT NI
 If so, is septage loading controlled, and are appropriate records maintained? 	I Yes	₩ No
Comments:		
13. Are all plant records (operational logs, equipment maintenance, industrial waste contributors, sampling and testing) available for review and are records adequate? <u>Comments:</u>	▼ Yes	Г No
14. Which of the following records does the plant maintain?		
✓ Operational logs ✓ Instrument maintenance & calibration		
▼ Mechanical equipment maintenance	cilities)	
<u>Comments</u> :		
15. What does the operational log contain?		
▼ Visual observations ▼ Flow Measurement ▼ Laboratory results ▼ Process adjusted	stments	
☐ Control calculations ☐ Other (specify)		
Comments:		
16. What do the mechanical equipment records contain?	W. S. C.	- M
As built plans and specs Manufacturers instructions Lubrication schedules		
☐ Spare parts inventory ☐ Equipment/parts suppliers		
Other (specify)		
Comments:		
17. What do the industrial waste contribution records contain (Municipal only)?		
☐ Waste characteristics ☐ Impact on plant ☐ Locations and discharge types		
Cother (specify) NA		
Comments:		
18. Which of the following records are kept at the plant and available to personnel?		
▼ Equipment maintenance records ▼ Operational log		
▼ Instrumentation records		
Comments:		
19. List records not normally available to plant personnel and their location: None		
Comments:		
20. Are the records maintained for the required time period (three or five years)?	▼ Yes	□ No
Comments:	1. 1.03	1 110

Permit # VA

VA0062189

UNIT PROCESS EVALUATION SUMMARY SHEET

UNIT PROCESS	APPLICABLE	PROBLEMS*	COMMENTS
Sewage Pumping	Y	1	The community's one pump station has been out of service for about two years. According to Mr. Morefield (telephone Aug 14, 2013), the pumps and piping are in stock, the control panel is being rebuilt; as soon as it is done, all will be installed, anticipate by the end of October 2013.
Ponds/Lagoons	Y		Three aerated ponds in series. The sludge depth was checked in all ponds in Spring 2013.
Secondary Sedimentation	Υ		Two clarifiers, operated independently.
Chlorination	Υ		Two sodium hypochlorite tablet feeders
Dechlorination	Υ		Two sodium bisulfite tablet feeders
Post Aeration	Υ		Cascade aeration
Flow Measurement (Effluent)	Y		Parshall flume with ultrasonic flow sensor/transmitter. Annual calibration was performed on 5-30-13. The effluent flow reading was 50 gpm at time of this inspection. The flow meter is left turned on even when there is no effluent flow-operators said they lose all data if it is turned off. Mr. Morefield said this unit is due to be replaced.
Plant Outfall	Υ		

UNIT PROCESS	APPLICABLE	PROBLEMS*	COMMENTS
Sludge Pumping	Υ		Sludge from the clarifiers is returned to distribution box A.
Flotation Thickening (DAF)			
Gravity Thickening			
Aerobic Digestion			
Anaerobic Digestion			
Lime Stabilization			
Composting			
Land Application (Sludge)			

- * Problem Codes
- 1. Unit Needs Attention
- 2. Abnormal Influent/Effluent
- 3. Evidence of Equipment Failure

- 4. Unapproved Modification or Temporary Repair
- 5. Evidence of Process Upset
- 6. Other (explain in comments)

Permit #

0062189

INSPECTION OVERVIEW AND CONDITION OF TREATMENT UNITS

- Influent enters the plant through distribution box A, from which it may be sent to any of the three aerated ponds. The current valve configuration sends all influent in to pond 1, then to the other two in series.
- > The ponds provide enough holding capacity that the plant discharge is intermittent.
- > To discharge, water from the ponds is sent to Distribution Box D and is pumped into the two clarifiers. The operators recently installed a three foot staff gage inside the distribution box. The staff gage is positioned so that operators can measure depth up to five feet. Mr. Triplett explained that by monitoring the water depth in the distribution box, operators can have an idea of how much the water level in the ponds is dropping during plant discharge.
- At the time of this inspection, the water in Distribution Box D was over the top mark of the staff gage (>5 ft in distribution box).
- Now one pump from Distribution Box D to clarifiers replaced the 2 submersible pumps seen in 2011.
- Distribution box D discharge is split to two parallel clarifiers, both in service. Water from each clarifier goes to its own chlorine tablet feeder, contact tank, and sodium bisulfite tablet feeder. Mr. Clemens said he uses just one sleeve for each feeder.
- > Flow from each clarifier passes under a baffle/skimmer and over a weir, than enters a tablet feeder for chlorination. Passes though a chlorine contact tank and dechlor tablet feeder.
- Flow from the two tablet feeders joins prior to the Parshall flume and then discharges to the step cascade and into the creek.
- > The Parshall flume is quite narrow. When we first got there, flow readings were low Mr. Clemens discovered a piece of derbies blocking the flume.
- > Outfall 001 in acceptable condition. Area is naturally mushy.
- Steps from the control building to the aerated ponds and the old steps/dock in the ponds have been removed. Vehicles now have better access to the treatment processes if needed.
- The Community has one pump station that serves three residences on the east side of Rt. 611. This pump station has been out of service for over two years. Water from the pump station is pumped and hauled to the WWTP about once per week. The pump truck delivers the wastewater to the manhole just inside fence near control building, where it mixes with the regular influent flow prior to Distribution Box A.
- > The staff has been working on removing brush and vines from the fence surrounding the plant.
- Mr. Clemens said monitoring well #4 was currently inaccessible; a tree fell and was blocking access. Davey Tree was scheduled to come out during the week of July 29th to remove it.
- Mr. Clemens also stated that the pathway between the monitoring wells was pretty overgrown. A crew was planned to clear vegetation to improve access.
- The telephone line to the control building was not operational.

Permit #

VA0062189

▼ Yes

□ No

LABORATORY INSPECTION

Allan Clemens, Charlie Triplett – Loudoun Water

PRESENT DURING INSPECTION:

1.	analyst's initials, instrument calibration and	e, analysis date/time, sample location, test method, d maintenance, and Certificate of Analysis? ate/Time Sample Location Test Method Analysis?		
	▼ Analyst's Initials ▼ Instrument	Calibration & Maintenance		
	☐ Chain of Custody ☐ Certificate	of Analysis		
2.	Are Discharge Monitoring Reports complet Month(s) reviewed:	e and correct?	▼ Yes	□ No
	Dec 2012 - Feb 2013			
3.	Are sample location(s) according to permit otherwise specified)?	requirements (after all treatment unless	₩ Yes	ΓNο
4.	Are sample collection, preservation, and he equipment adequate?	olding times appropriate; and is sampling	₩ Yes	ΓNο
5.	Are grab and composite samples represent monitored activity?	tative of the flow and the nature of the	▼ Yes	□ No
6.	If analysis is performed at another location List parameters and name & address of co		₩ Yes	ΓNο
VEL 449	D5 & TSS Idoun Water Regional Laboratory AP ID 450115 B61 Loudoun Water Way Iburn, VA 20146	Ammonia Microbac Laboratories NELAC ID – 460022-1834 see note below 2101 Van Deman St Baltimore, MD 21224		
env effe	Baltimore Division of Microbac volunt vironmental lab accreditation (and thus ective July 2, 2013. Ammonia-N sample oratories.			
22 Ash	e Analytical Services, Inc. VELAF 25 Riverside Dr. ville, NC 28804 28) 254-7176	P ID 460222		

Are annual thermometer calibration(s) adequate?

8.	Parameters evaluated during this inspection (attach checklists):	
	I ▼ pH	
	Temperature	
	▼ Total Residual Chlorine	
	□ Dissolved Oxygen	
	F Biochemical Oxygen Demand	
	Total Suspended Solids	
	Other (specify)	
	Cother (specify)	
	Other (specify)	
	Comments:	

DEQ form: June 2011

Permit #	VA0062189
----------	-----------

EFFLUENT FIELD DATA:

Flow	<u>59</u>	GPM	Dissolved Oxygen	7.65 mg/L	TRC (Contact Tank)	3.5	mg/L
рН	7.9	S.U.	Temperature	°c	TRC (Final Effluent)	<u><ql< u=""></ql<></u>	mg/L
	Sampling	g Inspection	□ Yes (se	ee Sampling Inspe	ction Report) 🔽 No		

CONDITION OF OUTFALL AND EFFLUENT CHARACTERISTICS:

California III	CONDITION OF OUTFALL A	ND EFFLUENT CHARAC	TIERISTICS:
1.	Type of outfall: Shore based ☐ Submerged	Diffuser?	™ No
2.	Are the outfall and supporting structures in good co	ndition?	□ No
3.	Final Effluent (evidence of following problems): Turbid effluent Visible foam	☐ Sludge bar ☐ Unusual color	☐ Grease ☐ Oil sheen
4.	Is there a visible effluent plume in the receiving stre	eam?	▽ No
5.	Receiving stream: Comments:	Indication of problem	ns (explain below)

REQUEST for CORRETIVE ACTION:

1. Please see the summary at beginning of this report.

NOTES and COMMENTS:

On August 15, 2013, Mr. Morefield informed me via email that the effluent flow meter had been replaced. The new flow meter is a Greyline Ultrasonic Model# OCF 5.0; Serial # 52749. He also informed me that the new pumps had been installed in the pump station; the staff was still waiting on the control box.

Facility name: St. Louis Community WWTP VPDES Permit No. VA0062189 Site Inspection Date: July 25, 2013 Photos & Layout by: S. Allen

7) Outfall 001.

8) Rt. 790 Bridge over Beaverdam Creek.

Facility name: St. Louis Community WWTP VPDES Permit No. VA0062189 Site Inspection Date: July 25, 2013 Photos & Layout by: S. Allen

9) Staff gage at bridge for in stream flow measurement.

To:

Alison Thompson

From:

Rebecca Shoemaker

Date:

March 23, 2016

Subject:

Planning Statement for St Louis WWTP

Permit Number:

VA0062189

Information for Outfall 001:

Discharge Type:

Municipal

Discharge Flow:

0.086 MGD

Receiving Stream:

Beaverdam Creek, UT

Latitude / Longitude:

39° 00' 21" N 77° 47' 45" W

Rivermile:

0.005

Streamcode:

1aXME

Waterbody:

VAN-A07R; PL11

Water Quality Standards:

Class III, Section 9, No special standards

Drainage Area:

0.59 sq miles

1. Please provide water quality monitoring information for the receiving stream segment. If there is not monitoring information for the receiving stream segment, please provide information on the nearest downstream monitoring station, including how far downstream the monitoring station is from the outfall.

This facility discharges to an unnamed tributary (streamcode XME), which has been neither monitored nor assessed. Streamcode XME discharges to another unnamed tributary (streamcode XGN), which discharges to another unnamed tributary (streamcode XGU), which discharges to Beaverdam Creek (streamcode BEC). DEQ freshwater probabilistic monitoring station 1aXGU000.18 is located downstream from Route 790 on streamcode XGU, approximately 0.68 mile downstream from Outfall 001. The following is the water quality summary for this unnamed tributary, as taken from the Draft 2014 Integrated Report:

Class III, Section 9.

DEQ monitoring stations located in this unnamed tributary (XGU):

• freshwater probabilistic monitoring station 1aXGU000.18, downstream from Route 790

Biological and associated chemical monitoring indicate that the aquatic life, fish consumption and wildlife uses are fully supporting. An observed effect is noted for the aquatic life use based on one exceedance of the consensus based probable effects concentration (PEC) sediment screening values for chlordane (17.6 ppb, dry weight).

DEQ ambient monitoring station 1aBEC011.76 is located on Beaverdam Creek at Route 630, approximately 1.14 miles upstream from the confluence of unnamed tributary XGU with Beaverdam Creek. The following is the water quality summary for this segment of Beaverdam Creek, as taken from the Draft 2014 Integrated Report:

Class III, Section 9.

DEQ monitoring stations located in this segment of Beaverdam Creek:

ambient water quality monitoring station 1aBEC011.76, at Route 630

E. coli monitoring finds a bacterial impairment, resulting in an impaired classification for the recreation use. This impairment is nested within the downstream completed bacteria TMDL for Beaverdam Creek. The aquatic life use is considered fully supporting. The fish consumption and wildlife uses were not assessed.

2. Does this facility discharge to a stream segment on the 303(d) list? If yes, please fill out Table A.

No.

3. Are there any 303(d) listed impairments that are relevant to this discharge? If yes, please fill out Table B.

Yes.

Table B. Information on Downstream 303(d) Impairments and TMDLs

Waterbody Name	Impaired Use	Cause	Distance From Outfall	TMDL completed	WLA	Basis for WLA	TMDL Schedule
Impairment	Information in	the Draft 2014 Inte	grated Repo	ort		**	
Beaverdam Creek	Recreation	E. coli	0.81 mile	Goose Creek Bacteria TMDL 5/1/2003	2.38E+11 cfu/year fecal coliform bacteria 1.50E+11 cfu/year E. coli bacteria*	200 cfu/100 ml fecal coliform 126 cfu/100 ml <i>E. coli*</i> 0.086 MGD	
Goose Creek Reservoir	Fish Consumption	PCBs	24 miles	No			2018
Goose Creek	Aquatic Life	Benthic Macro- invertebrates	25 miles	Goose Creek Watershed Benthic (Sediment) 04/26/2004	3.9 tons sediment/ year**	TSS concentration 30 mg/L 0.086 MGD	

^{*} The WLA is expressed in the TMDL as both cfu/year fecal coliform and E. coli bacteria.

^{**}This facility was assigned a total WLA of 19.5 tons/year in the Benthic TMDL for the Goose Creek watershed. This total WLA was calculated based upon the permitted maximum average concentration for TSS (mg/L) and an assumption of the facility operating at five times the design flow. The factor of five for the design flow was used as a conservative measure to build in future growth in the watershed. Although the future growth for the watershed was determined by the design flow of each facility within in the watershed, the future growth is available for both new and expanding permits in the watershed. The actual WLA for this facility without including the future growth is 3.9 tons/year.

4. Is there monitoring or other conditions that Planning/Assessment needs in the permit?

There is a completed downstream TMDL for the aquatic life use impairment for the Chesapeake Bay. However, the Bay TMDL and the WLAs contained within the TMDL are not addressed in this planning statement.

In support for the PCB impairment listed for the Goose Creek Reservoir and for the farthest downstream segment of Goose Creek, this facility is a candidate for low-level PCB monitoring, based upon its designation as a minor municipal facility. Low-level PCB analysis uses EPA Method 1668, which is capable of detecting low-level concentrations for all 209 PCB congeners. DEQ staff has concluded that low-level PCB monitoring is not warranted for this facility, as it is a small wastewater treatment facility and is not expected to be a source of PCBs. Based upon this information, this facility will not be requested to monitor for low-level PCBs.

5. Fact Sheet Requirements – Please provide information regarding any drinking water intakes located within a 5 mile radius of the discharge point.

There are no public water supply intakes located within five miles of this discharge.

FRESHWATER WATER QUALITY CRITERIA / WASTELOAD ALLOCATION ANALYSIS

Facility Name:

St Louis WWTP

Permit No.: VA0062189

Receiving Stream:

Beaverdam Creek, UT

Version: OWP Guidance Memo 00-2011 (8/24/00)

Stream Information		Stream Flows		Mixing Information		Effluent Information	
Mean Hardness (as CaCO3) =	mg/L	1Q10 (Annual) =	0 MGD	Annual - 1Q10 Mix =	100 %	Mean Hardness (as CaCO3) =	50 mg/L
90% Temperature (Annual) =	deg C	7Q10 (Annual) =	0 MGD	- 7Q10 Mix =	100 %	90% Temp (Annual) =	25 deg C
90% Temperature (Wet season) =	deg C	30Q10 (Annual) =	0 MGD	- 30Q10 Mix =	100 %	90% Temp (Wet season) =	15 deg C
90% Maximum pH =	SU	1Q10 (Wet season) =	0 MGD	Wet Season - 1Q10 Mix =	100 %	90% Maximum pH =	8.2 SU
10% Maximum pH =	SU	30Q10 (Wet season) =	0 MGD	- 30Q10 Mix =	100 %	10% Maximum pH =	7.5 SU
Tier Designation (1 or 2) =	1	30Q5 =	0 MGD			Discharge Flow =	0.086 MGD
Public Water Supply (PWS) Y/N? =	n	Harmonic Mean =	0 MGD				
Trout Present Y/N? =	n						
Early Life Stages Present Y/N? =	V						

Parameter	Background	1240)	Water Qua	Ity Criteria			Wasteload	Allocations			Antidegrada	ation Baseline		A	ntidegradati	on Allocations			Most Limiti	ng Allocation	ns
(ug/l unless noted)	Conc.	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	нн	Acute	Chronic	HH (PWS)	нн	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН
Acenapthene	0			na	9.9E+02		-	na	9.9E+02	-	-	-	-	_		_		-		na	9.9E+02
Acrolein	0	-		na	9.3E+00			na	9.3E+00	-	-									na	9.3E+00
Acrylonitrile ^C	0	**		na	2.5E+00			na	2.5E+00											na	2.5E+00
Aldrin ^c Ammonia-N (mg/l)	0	3.0E+00		na	5.0E-04	3.0E+00		na	5.0E-04		11221						-	3.0E+00		na	5.0E-04
(Yearly) Ammonia-N (mg/l)	0	5.73E+00	9.12E-01	na	-	5.73E+00	9.12E-01	na	-	-		**				-		5.73E+00	9.12E-01	na	
(High Flow)	0	5.73E+00	1.74E+00	na		5.73E+00	1.74E+00	na	-	-				-				5.73E+00	1.74E+00	na	
Anthraœne	0		-	na	4.0E+04			na	4.0E+04					-				-		na	4.0E+04
Antimony	0	-		na	6.4E+02			na	6.4E+02	-								-		na	6.4E+02
Arsenic	0	3.4E+02	1.5E+02	na		3.4E+02	1.5E+02	na										3.4E+02	1.5E+02	na	
Barium	0	-		na	-			na												na	
Benzene ^C	0			na	5.1E+02			na	5.1E+02				-	_				-		na	5.1E+02
Benzidine ^C	0			na	2.0E-03			na	2.0E-03											na	2.0E-03
Benzo (a) anthraœne c	0		-	na	1.8E-01			na	1.8E-01									_		na	1.8E-01
Benzo (b) fluoranthene ^C	0			na	1.8E-01			na	1.8E-01							-				na	1.8E-01
Benzo (k) fluoranthene ^C	0			na	1.8E-01			na	1.8E-01				_							na	1.8E-01
Benzo (a) pyrene ^c	0			na	1.8E-01			na	1.8E-01				_		-			_	_	na	1.8E-01
Bis2-Chloroethyl Ether ^C	0	-	-	na	5.3E+00			na	5.3E+00											na	5.3E+00
Bis2-Chloroisopropyl Ether	0			na	6.5E+04			na	6.5E+04						_		-		_		6.5E+04
Bis 2-Ethylhexyl Phthalate ^C	0			na	2.2E+01			na	2.2E+01		-					_		_	-	na	2.2E+01
Bromoform ^C	0			na	1.4E+03			na	1.4E+03		-		_							na	1.4E+03
Butylbenzylphthalate	0			na	1.9E+03			na	1.9E+03						6070x	939 C		_		na	
Cadmium	0	1.8E+00	6.6E-01	na	_	1.8E+00	6.6E-01	na								-		1.8E+00	6.6E-01	na	1.9E+03
Carbon Tetrachloride c	0	-		na	1.6E+01			na	1.6E+01				_				_	1.02+00	0.0E-01	na	4.05.04
Chlordane ^c	0	2.4E+00	4.3E-03	na	8.1E-03	2.4E+00	4.3E-03	na	8.1E-03		-		_	177.0 NES	-			2.45,00	4.25.00	na	1.6E+01
Chloride	0	8.6E+05	2.3E+05	na		8.6E+05	2.3E+05	na	U.1L-00						0.77			2.4E+00	4.3E-03	na	8.1E-03
TRC	0	1.9E+01	1.1E+01	na		1.9E+01	1.1E+01	na								-	-	8.6E+05	2.3E+05	na	
Chlorobenzene	0		_	na	1.6E+03													1.9E+01	1.1E+01	na	
				110	1.0L+03			na	1.6E+03								***			na	1.6E+03

Parameter	Background		Water Qua	Ity Criteria			Wasteload	Allocations			Antidegrada	ation Baseline		А	ntidegradatio	n Allocations			Most Limiti	ing Allocation	ns
(ug/l unless noted)	Conc.	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	нн	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	нн
Chlorodibromomethane ^C	0			na	1.3E+02			na	1.3E+02											na	1.3E+02
Chloroform	0			na	1.1E+04			na	1.1E+04											na	1.1E+04
2-Chloronaphthaene	0			na	1.6E+03			na	1.6E+03			_				14200			_		
2-Chlorophenol	0		-	na	1.5E+02			na	1.5E+02		0.000									na	1.6E+03
Chlorpyrifos	0	8.3E-02	4.1E-02	na		8.3E-02	4.1E-02	na	1.52.02	3230	-	- 	-							na	1.5E+02
Chromium III	0	3.2E+02	4.2E+01	na		3.2E+02	4.1E-02 4.2E+01		10.000	-			-	-				8.3E-02	4.1E-02	na	
Chromium VI	0	1.6E+01	1.1E+01	na		\$78850-15000000		na		-								3.2E+02	4.2E+01	na	
Chromium, Total	0					1.6E+01	1.1E+01	na		-								1.6E+01	1.1E+01	na	
Chrysene ^C				1.0E+02			-	na												na	
	0	7.05.00		na	1.8E-02			na	1.8E-02				220	-	77					na	1.8E-02
Copper	0	7.0E+00	5.0E+00	na	-	7.0E+00	5.0E+00	na									-	7.0E+00	5.0E+00	na	
Cyanide, Free DDD ^c	0	2.2E+01	5.2E+00	na	1.6E+04	2.2E+01	5.2E+00	na	1.6E+04		**							2.2E+01	5.2E+00	na	1.6E+04
DDE c	0			na	3.1E-03			na	3.1E-03			**								na	3.1E-03
	0			na	2.2E-03			na	2.2E-03		-							-		na	2.2E-03
DDT ^c	0	1.1E+00	1.0E-03	na	2.2E-03	1.1E+00	1.0E-03	na	2.2E-03									1.1E+00	1.0E-03	na	2.2E-03
Demeton	0	-	1.0E-01	na			1.0E-01	na				-							1.0E-01	na	
Diazinon	0	1.7E-01	1.7E-01	na		1.7E-01	1.7E-01	na			-							1.7E-01	1.7E-01	na	
Dibenz(a,h)anthraœne ^c	0			na	1.8E-01			na	1.8E-01							-				na	1.8E-01
1,2-Dichlorobenzene	0		***	na	1.3E+03			na	1.3E+03									-		na	1.3E+03
1,3-Dichlorobenzene	0		-	na	9.6E+02	-		na	9.6E+02											na	9.6E+02
1,4-Dichlorobenzene	0			na	1.9E+02			na	1.9E+02									-		na	1.9E+02
3,3-Dichlorobenzidine ^c	0			na	2.8E-01			na	2.8E-01								***			na	2.8E-01
Dichlorobromomethane ^C	0			na	1.7E+02			na	1.7E+02											na	1.7E+02
1,2-Dichloroethane ^C	0			na	3.7E+02			na	3.7E+02					-			_			na	3.7E+02
1,1-Dichloroethylene	0			na	7.1E+03			na	7.1E+03	_										na	7.1E+03
1,2-trans-dichloroethylene	0			na	1.0E+04		22	na	1.0E+04						-				-		1.0E+04
2,4-Dichlorophenol	0			na	2.9E+02			na	2.9E+02			22	_		_	22				na	
2,4-Dichlorophenoxy									2.02.02					1775				-		na	2.9E+02
acetic acid (2,4-D)	0			na				na										-		na	
1,2-Dichloropropane ^C	0			na	1.5E+02			na	1.5E+02						**					na	1.5E+02
1,3-Dichloropropene ^C	0			na	2.1E+02			na	2.1E+02			***								na	2.1E+02
Dieldrin ^C	0	2.4E-01	5.6E-02	na	5.4E-04	2.4E-01	5.6E-02	na	5.4E-04				-	1		-		2.4E-01	5.6E-02	na	5.4E-04
Diethyl Phthalate	0	-		na	4.4E+04		***	na	4.4E+04											na	4.4E+04
2,4-Dimethylphenol	0			na	8.5E+02	1000	77	na	8.5E+02	-								-		na	8.5E+02
Dimethyl Phthalate	0			na	1.1E+06			na	1.1E+06		-		-					-		na	1.1E+06
Di-n-Butyl Phthalate	0			na	4.5E+03			na	4.5E+03									-		na	4.5E+03
2,4 Dinitrophenol	0			na	5.3E+03		***	na	5.3E+03											na	5.3E+03
2-Methyl-4,6-Dinitrophenol	0			na	2.8E+02			na	2.8E+02											na	2.8E+02
2,4-Dinitrotoluene ^c	0	-		na	3.4E+01	-		na	3.4E+01	-		-								na	3.4E+01
Dioxin 2,3,7,8- tetrachlorodibenzo-p-dioxin	0				E 4 E 00			272	E 4E 05												0.7E101
				na	5.1E-08		-	na	5.1E-08				_					-		na	5.1E-08
1,2-Diphenylhydrazine	0		-	na	2.0E+00			na	2.0E+00	-	-				-			-		na	2.0E+00
Alpha-Endosulfan	0	2.2E-01	5.6E-02	na	8.9E+01	2.2E-01	5.6E-02	na	8.9E+01				-				-	2.2E-01	5.6E-02	na	8.9E+01
Beta-Endosulfan	0	2.2E-01	5.6E-02	na	8.9E+01	2.2E-01	5.6E-02	na	8.9E+01		-							2.2E-01	5.6E-02	na	8.9E+01
Alpha + Beta Endosulfan	0	2.2E-01	5.6E-02		-	2.2E-01	5.6E-02										-	2.2E-01	5.6E-02		
Endosulfan Sulfate	. 0			na	8.9E+01			na	8.9E+01				-							na	8.9E+01
Endrin	0	8.6E-02	3.6E-02	na	6.0E-02	8.6E-02	3.6E-02	na	6.0E-02									8.6E-02	3.6E-02	na	6.0E-02
Endrin Aldehyde	0			na	3.0E-01			na	3.0E-01											na	3.0E-01

Parameter	Background		Water Qual		T		Wasteload	Allocations	-		Antidegrada	ation Baseline		A	ntidegradatio	n Allocations			Most Limiti	ng Allocation	is
(ug/l unless noted)	Conc.	Acute	Chronic	HH (PWS) HH	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	НН
Ethylbenzene	0			na	2.1E+03			na	2.1E+03											na	2.1E+03
Fluoranthene	0			na	1.4E+02			na	1.4E+02			_						-		na	1.4E+02
Fluorene	0			na	5.3E+03			na	5.3E+03			_	-					-	-	na	5.3E+03
Foaming Agents	0			na				na				-			144					na	
Guthion	0		1.0E-02	na			1.0E-02	na			-	-							1.0E-02	na	
Heptachlor ^C	0	5.2E-01	3.8E-03	na	7.9E-04	5.2E-01	3.8E-03	na	7.9E-04			-	722	-				5.2E-01	3.8E-03		
Heptachlor Epoxide ^C	0	5.2E-01	3.8E-03	na	3.9E-04	5.2E-01	3.8E-03	na	3.9E-04	777		97753 87867	5795	100	470	550				na	7.9E-04
Hexachlorobenzene ^C	0	0.22-01	0.0L-03			J.2L-01	3.0L-03							-		7	-	5.2E-01	3.8E-03	na	3.9E-04
Hexachlorobutadiene ^C	0			na	2.9E-03			na	2.9E-03											na	2.9E-03
Hexachlorocyclohexane	0	-	-	na	1.8E+02	-	-	na	1.8E+02					-	***					na	1.8E+02
Alpha-BHC ^C	0	**		na	4.9E-02		-	na	4.9E-02			722			122	227	000				4.9E-02
Hexachlorocyclohexane				110				ii.u	4.52.02				_					-		na	4.9E-02
Beta-BHC ^c	0			na	1.7E-01		-	na	1.7E-01											na	1.7E-01
Hexachlorocyclohexane						-															
Gamma-BHC ^C (Lindane)	0	9.5E-01	na	na	1.8E+00	9.5E-01		na	1.8E+00	-				-		TT)		9.5E-01		na	1.8E+00
Hexachlorocyclopentadiene	0		-	na	1.1E+03			na	1.1E+03											na	1.1E+03
Hexachloroethane ^C	0			na	3.3E+01			na	3.3E+01		***		-							na	3.3E+01
Hydrogen Sufide	0		2.0E+00	na			2.0E+00	na											2.0E+00	na	
Indeno (1,2,3-ad) pyrene c	0			na	1.8E-01			. na	1.8E-01										••	na	1.8E-01
Iron	0			na				na											_	na	
Isophorone ^C	0	-		na	9.6E+03			na	9.6E+03			-			-	200					
Kepone	0		0.0E+00	na			0.0E+00	na	5.02.00				-							na	9.6E+03
Lead	0	4.9E+01	5.6E+00		-	1000 1000 1000 1000 1000 1000 1000 100												-	0.0E+00	na	
Malathion				na		4.9E+01	5.6E+00	na	-	-			-					4.9E+01	5.6E+00	na	
	0		1.0E-01	na			1.0E-01	na											1.0E-01	na	
Manganese	0	***		na			-	na			**							-		na	
Mercury	0	1.4E+00	7.7E-01	7.5		1.4E+00	7.7E-01		**							**		1.4E+00	7.7E-01		
Methyl Bromide	0			na	1.5E+03			na	1.5E+03							***				na	1.5E+03
Methylene Chloride C	0		-	na	5.9E+03			na	5.9E+03			-	-	-		-				na	5.9E+03
Methoxychlor	0		3.0E-02	na		-	3.0E-02	na		_									3.0E-02	na	
Mirex	0		0.0E+00	na		-	0.0E+00	na											0.0E+00	na	
Nickel	- 0	1.0E+02	1.1E+01	na	4.6E+03	1.0E+02	1.1E+01	na	4.6E+03				-					1.0E+02	1.1E+01	na	4.6E+03
Nitrate (as N)	0			na			-	na												na	
Nitrobenzene	0			na	6.9E+02			na	6.9E+02											na	6.9E+02
N-Nitrosodimethylamine ^c	0			na	3.0E+01			па	3.0E+01		-								4220	na	3.0E+01
N-Nitrosodiphenylamine ^C	0			na	6.0E+01			na	6.0E+01					_	_	-			-		
N-Nitrosodi-n-propylamine ^C	0			na	5.1E+00			na	5.1E+00	_	200	22	522			-				na	6.0E+01
Nonylphenol	0	2.8E+01	6.6E+00			2.8E+01	6.6E+00	na	J.1E+00	POLICE IN THE PROPERTY OF THE		-	-					2.05.04	C CE - 00	na	5.1E+00
Parathion	0	6.5E-02	1.3E-02	na		6.5E-02	1.3E-02		i					_		_		2.8E+01	6.6E+00	na	
PCB Total ^C	0	0.5L-02 	1.4E-02			0.5E-02		na	6 45 04					-				6.5E-02	1.3E-02	na	
Pentachlorophenol ^c				na	6.4E-04	4.45:0:	1.4E-02	na	6.4E-04		===		-	_				-	1.4E-02	na	6.4E-04
60.00	0	1.4E+01	1.1E+01	na	3.0E+01	1.4E+01	1.1E+01	na	3.0E+01									1.4E+01	1.1E+01	na	3.0E+01
Phenol	0	***		na	8.6E+05			na	8.6E+05			-						-		na	8.6E+05
Pyrene	0			na	4.0E+03		-	na	4.0E+03	-										na	4.0E+03
Radionuclides Gross Alpha Activity	0		-	na				na		-						-				na	
(pCi/L)	0			na	-			na		-				1002	90019			9200		22.00	
Beta and Photon Activity					90200			· ra						-			-	-		na	
(mrem/yr)	0			na				na					-			**		-		na	
Radium 226 + 228 (pCi/L)	0			na				na									_	-		na	
Uranium (ug/l)	0			na				na												na	

Parameter	Background		Water Qua	Ity Criteria			Wasteload	d Allocations			Antidegrada	ation Baseline		А	ntidegradati	on Allocations			Most Limiti	ing Allocation	ns
(ug/l unless noted)	Conc.	Acute	Chronic	HH (PWS)	нн	Acute	Chronic	HH (PWS)	НН	Acute	Chronic	HH (PWS)	нн	Acute	Chronic	HH (PWS)	нн	Acute	Chronic	HH (PWS)	нн
Selenium, Total Recoverable	0	2.0E+01	5.0E+00	na	4.2E+03	2.0E+01	5.0E+00	na	4.2E+03	-			-			122		2.0E+01	5.0E+00	na	4.2E+03
Silver	0	1.0E+00	-	na	-	1.0E+00	***	na	5			-			**			1.0E+00		na	
Sulfate	0			na	-	11		na												na	
1,1,2,2-Tetrachloroethane ^c	0		-	na	4.0E+01			na	4.0E+01		100			-		-		-		na	4.0E+01
Tetrachloroethylene ^C	0	-	-	na	3.3E+01			na	3.3E+01	-										na	3.3E+01
Thallium	0			na	4.7E-01			na	4.7E-01			**								na	4.7E-01
Toluene	0			na	6.0E+03			na	6.0E+03							-		-		na	6.0E+03
Total dissolved solids	0		777	na				na		-		-				-	0.775			na	
Toxaphene ^c	0	7.3E-01	2.0E-04	na	2.8E-03	7.3E-01	2.0E-04	na	2.8E-03									7.3E-01	2.0E-04	na	2.8E-03
Tributyltin	0	4.6E-01	7.2E-02	na		4.6E-01	7.2E-02	na				-	-				-	4.6E-01	7.2E-02	na	
1,2,4-Trichlorobenzene	0			na	7.0E+01			na	7.0E+01		**									na	7.0E+01
1,1,2-Trichloroethane ^C	0	-		na	1.6E+02			na	1.6E+02				-					-		na	1.6E+02
Trichloroethylene ^c	0			na	3.0E+02			na	3.0E+02											na	3.0E+02
2,4,6-Trichlorophenol c	0		_	na	2.4E+01			na	2.4E+01				_							na	2.4E+01
2-(2,4,5-Trichlorophenoxy) propionic acid (Silvex)	. 0			na				na						-						na	
Vinyl Chloride ^C	0			na	2.4E+01			na	2.4E+01									_		na	2.4E+01
Zinc	0	6.5E+01	6.6E+01	na	2.6E+04	6.5E+01	6.6E+01	na	2.6E+04									6.5E+01	6.6E+01	na	2.6E+04

Notes:

- 1. All concentrations expressed as micrograms/liter (ug/l), unless noted otherwise
- 2. Discharge flow is highest monthly average or Form2C maximum for Industries and design flow for Municipals
- 3. Metals measured as Dissolved, unless specified otherwise
- 4. "C" indicates a carcinogenic parameter
- Regular WLAs are mass balances (minus background concentration) using the % of stream flow entered above under Mixing Information. Antidegradation WLAs are based upon a complete mix.
- 6. Antideg. Baseline = (0.25(WQC background conc.) + background conc.) for acute and chronic
 - = (0.1(WQC background conc.) + background conc.) for human health
- 7. WLAs established at the following stream flows: 1Q10 for Aute, 30Q10 for Chronic Ammonia, 7Q10 for Other Chronic, 30Q5 for Non-carcinogens and Harmonic Mean for Cardinogens. To apply mixing ratios from a model set the stream flow equal to (mixing ratio 1), effluent flow equal to 1 and 100% mix.

Metal	Target Value (SSTV)
Antimony	6.4E+02
Arsenic	9.0E+01
Barium	na
Cadmium	3.9E-01
Chromium III	2.5E+01
Chromium VI	6.4E+00
Copper	2.8E+00
Iron	na
Lead	3.4E+00
Manganese	na
Mercury	4.6E-01
Nickel	6.8E+00
Selenium	3.0E+00
Silver	4.2E-01
Zinc	2.6E+01

Note: do not use QL's lower than the minimum QL's provided in agency guidance

Date	Flow	рН	Temp
	(MGD)	(s.u.)	(deg C)
3/18/2014	0.0695	6.7	5.1
3/19/2014	0.09	6.2	7.1
3/20/2014	0.0786	7.1	7.4
3/21/2014	0.0259	8.4	8.4
3/24/2014	0.0851	7.7	7.7
3/25/2014	0.07717	8.2	8.2
3/26/2014	0.07579	6.8	6.8
3/27/2014	0.0297	4.2	4.2
5/5/2014	0.091	7.8	16.9
5/6/2014	0.0836	7.7	17.6
5/7/2014	0.087	8.3	18.1
5/8/2014	0.0277	7.3	17.9
5/12/2014	0.0828	8.1	22.6
5/13/2014	0.0879	7.9	22.9
5/14/2014	0.1037	7.9	23.1
5/15/2014	0.0302	7.8	23.3
5/20/2014	0.0789	7.9	18.4
5/21/2014	0.0885	8.1	21.3
5/22/2014	0.1013	8.1	22.5
5/23/2014	0.0373	8	22.7
5/27/2014	0.0906	7.6	22.1
5/28/2014	0.0653	8.1	24.9
5/29/2014	0.0825	7.9	24.3
5/30/2014	0.0262	8.1	22.7
8/4/2014	0.0788	8	23.9
8/5/2014	0.0907	8.1	24.4
8/6/2014	0.097	8	25
8/7/2014	0.0317	8	25.7
8/11/2014	0.0795	7.9	23.2
8/12/2014	0.0807	8.1	24.9
8/13/2014	0.092	8.2	24.7
8/14/2014	0.0238	8.2	24.3
8/18/2014 8/19/2014	0.0784	7.4 8.1	22.8
8/20/2014	0.0766 0.0762	8.1	24.8
8/21/2014	0.0762	8.1	25.3 25
9/8/2014	0.0343	7.8	22.9
9/9/2014	0.0665	8	23.8
9/10/2014	0.0864	7.9	23.8
9/11/2014	0.0275	7.8	23.9
9/15/2014	0.0815	7.6	20.5
9/16/2014	0.0813	8	21.5
9/17/2014	0.0721	7.8	20.8
9/18/2014	0.0266	7.8	20.3
9/22/2014	0.0569	7.5	7.5
9/23/2014	0.0704	7.9	7.9
9/24/2014	0.0651	7.9	7.9
9/25/2014	0.0232	7.8	7.8
4/6/2015	0.072	8.1	
4/7/2015	0.071	7.5	
4/8/2015	0.066	7.6	
4/9/2015	0.029	7.4	
4/13/2015	0.065	7.9	
4/14/2015	0.071	7.8	
4/15/2015	0.065	7.9	
4/16/2015	0.025	8	
4/20/2015	0.069	7.8	
4/21/2015	0.072	7.9	
4/22/2015	0.071	8	
4/23/2015	0.029	8.1	
4/27/2015	0.05	8.9	
4/28/2015	0.049	8.8	
4/29/2015	0.049	8.9	
4/30/2015	0.019	8.7	

January 2014 - No Flow	90th percentile pH	8.2
February 2014 - No Flow	10th percentile pH	7.5
April 2014 - No Flow	90th percentile temp	24.9
June 2014 - No Flow		
July 2014 - No Flow	Average Flow	0.058255
October 2014 - No Flow	Maximum Flow	0.1037
November 2014 - No Flow		
December 2014- No Flow		
June 2014 - No Flow July 2014 - No Flow October 2014 - No Flow November 2014 - No Flow	Average Flow	0.0582

January 2015 - No Flow February 2015 - No Flow March 2015 - No Flow September 2015 - No Flow October 2015 - No Flow November 2015 - No Flow December 2015 - No Flow

February 2016 - No Flow April 2016 - No Flow May 2016 - No Flow

5/4/2015	0.048	8.2
5/5/2015	0.054	8.9
5/6/2015	0.049	8.8
5/7/2015	0.017	8.6
5/19/2015	0.029	8.2
5/20/2015	0.048	8.2
5/21/2015	0.034	8
5/22/2015	0.013	7.9
6/1/2015	0.05	7.9
6/2/2015	0.052	7.9
6/3/2015	0.051	7.9
6/4/2015	0.051	7.8
6/5/2015	0.018	7.7
6/9/2015	0.047	7.9
6/10/2015	0.048	7.8
6/11/2015	0.047	7.8
6/12/2015	0.015	7.6
6/15/2015	0.048	8
6/16/2015	0.048	7.7
6/17/2015	0.053	7.8
6/18/2015	0.02	7.7
6/22/2015	0.057	7.9
6/23/2015	0.06	7.8
6/24/2015	0.056	7.7
6/25/2015	0.055	7.7
6/26/2015	0.021	7.8
	0.056	
7/6/2015		7.8
7/7/2015	0.055	7.8
7/8/2015	0.058	7.8
7/9/2015	0.059	7.7
7/10/2015	0.019	7.8
7/13/2015	0.058	7.7
7/14/2015	0.061	7.8
7/15/2015	0.068	7.8
7/16/2015	0.073	7.6
7/17/2015	0.021	8.1
7/20/2015	0.065	7.9
7/21/2015	0.061	7.7
7/22/2015	0.06	7.9
7/23/2015	0.02	7.9
7/28/2015	0.061	7.9
7/29/2015	0.046	8.1
7/30/2015	0.003	7.7
8/11/2015	0.061	7.9
8/12/2015	0.064	7.8
8/13/2015	0.069	7.8
8/14/2015	0.025	7.8
8/18/2015	0.055	7.8
8/19/2015	0.058	7.8
8/20/2015	0.087	7.8
8/21/2015	0.01	8
8/25/2015	0.052	8
8/26/2015	0.048	7.7
8/27/2015	0.032	7.7
1/4/2016	0.064	7.4
1/5/2016	0.067	7.4
1/6/2016	0.063	7.7
1/7/2016	0.063	7.6
1/8/2016	0.021	7.8
1/12/2016	0.07	7.8
1/13/16	0.08	7.7
1/14/16	0.03	7.8
1/15/16	0.027	7.6
1/19/16	0.079	7.5
1/20/16	0.026	7.9
3/7/16	0.088	8.8

3/8/16	0.079	9
3/9/16	0.086	8.2
3/10/16	0.075	8.1
3/11/16	0.03	8.4
3/14/16	0.086	8
3/15/16	0.08	7.9
3/16/16	0.083	7.7
3/17/16	0.082	7.6
3/18/16	0.026	7.9
3/21/16	0.091	7.6
3/22/2016	0.081	7.3
3/23/2016	0.081	7.5
3/24/2016	0.085	7.2
3/25/2016	0.025	7.3
3/28/2016	0.081	7.5
3/29/2016	0.077	7.7
3/30/2016	0.085	7.5
3/31/2016	0.026	7.5

Attachment 8

7/6/2016 2:01:58 PM

Facility = St Louis WWTP
Chemical = Total Residual Chlorine
Chronic averaging period = 4
WLAa = 19
WLAc =
Q.L. = 100
samples/mo. = 30
samples/wk. = 8

Summary of Statistics:

observations = 1

Expected Value = 200

Variance = 14400

C.V. = 0.6

97th percentile daily values = 486.683

97th percentile 4 day average = 332.758

97th percentile 30 day average = 241.210

< Q.L. = 0

Model used = BPJ Assumptions, type 2 data

A limit is needed based on Acute Toxicity
Maximum Daily Limit = 19
Average Weekly limit = 11.3335966321422
Average Monthly LImit = 9.41680211348591

The data are:

200

7/6/2016 2:00:49 PM

```
Facility = St Louis WWTP
Chemical = Ammonia as N
Chronic averaging period = 30
WLAa = 5.73
WLAc =
Q.L. = .2
# samples/mo. = 4
# samples/wk. = 1
```

Summary of Statistics:

```
# observations = 1

Expected Value = 9

Variance = 29.16

C.V. = 0.6

97th percentile daily values = 21.9007

97th percentile 4 day average = 14.9741

97th percentile 30 day average = 10.8544

# < Q.L. = 0

Model used = BPJ Assumptions, type 2 data
```

A limit is needed based on Acute Toxicity
Maximum Daily Limit = 5.73
Average Weekly limit = 5.73
Average Monthly LImit = 3.91774838625377

The data are:

9

Attachment 9

MEMORANDUM

State Water Control Board

P. O. Box 11143

2111 North Hamilton Street

Richmond, VA. 23230

SUBJECT:

Loudoun County

ŧ

St.

Louis C-510521

TO:

Da 1 e Phillips 1

FROM:

Gary N. Moore

DATE:

August 7,1979

COPIES:

Sam Waldo-(BAT), Elaíne Mozer-Construction Grants, Neil Peterman(NRO)

The following effluent limits apply to the St. Louis STP if the additional 30-day holding time at design flow is maintained and no effluent is discharged when the flow in Beaverdam Creek falls below 0.086 mgd:

B0D5+ ₹. N. Flow SS 0.086 mgd 20mg/1 6.8 mg/1 9 mg/1

I believe that no useful purpose will be served by imposing a TKN limit on this facility, in as much as the manufacturer states that the plant will achieve a TKN of 2.2 mg/l in the summer and 5.8 mg/l in the winter.

I would appreciate anything you could do to expedite the processing of this Step III grant through EPA. I believe the facility should be built as designed and approved by the State Department of Health and the Water Control Board.

State Water Control Board

2111 North Hamilton Street

P. O. Box 11143

Richmond, VA. 23230

SUBJECT: LOUDOUN COUNTY - ST. LOUIS STP C-5/052/

TO: Dato Pt Hips-BWCM

FROM: GARY MOURE - NRO

DATE: AUGUST 14,1979

COPIES: SAM WALOO-BAT, ELAINE MOZUR-CONS. GROWS, No. 1 POTORMAN-NRO

AFTER ADJUSTING STREAM VELOCITIES + SEGMENT LENGTHS, I have

ESTAMUSHED The FOLLOWING EFFLUENT LIMITS FOR ST. LOWIS:

FLOW 0.086 MGD

BODS + SS 20 mg/l (These LIMITS MEET ANTI-DEGRAPATION
TKN 5.0 mg/l ("STANDARDS" IN BEAVERDAM CREEK.
D.O. 6.8 mg/l.

The Following DATA WAS INPUT FOR The STREETER-Phelps (WITH NOD)
MODEL:

SEGMENT I (Receiving STREAM): LENGTH = 0.5 mi Voloning = /fps 7/10 Flow=0.0043 mgd

SEGMENT 2 (Beaverdam Creek to Dog Branch) Long TH = 2.2 mi Who ity = 1 fps

Flow: 0.086 mgD

Segment 3: (Bennephan (Reek From Segment 2 to confluence with North Fork)

Length = 7 mi.

Velocity = 0.5 lps

DALE Phillips - BURM

STREAM TEMP 30°C STREAM D.O. = 6.8 mg/l K, = .18 Kn = .1

K2 = 5.0

BACKGROUND STROAM BODS = 2 mg/l

" NOON = 2 mg/l

CRITICAL DISCHARGE = 0.007 ofs/sq.mi

The same Effluent STANDARDS ARE REQUIRED IF STREAM VelocITIES OF 0.5 Pps ARE USED FOR SEGMENTS 1 2 AND 0.25 Pps for Segment 3.

LOUDOUN COUNTY - St. Louis (Drainage Areas) S.A.A.

Beaverdam Creek Watershed above receiving stream	10.506 sq. mi. 0.0475 MGD
Unnamed tributary of Beaverdam Creek (receiving stream)	0.953 sq. mi. o.004295 MGD
Beaverdam Creek Watershed below unnamed tributary to Dog Branch	2.396 sq. mi. 0.0167 CFS 0.0108 MGD
Dog Branch Watershed	6.916 sq. mf. 0.0484 CFS 0.0312 MGD
Beaverdam Creek Watershed below Dog Branch to North Fork	1.264 sq. mi. 0.0057 MGD
North Fork Watershed	EST. 0.068 MGD
Potomac River, Section 9, Class III B 10 year/7 day drought flow	0.007 CFS/sq. mi.
(Goose Creek near Leesburg)	1CFS=0.646 MGD

SUBJECT: Louis STP - LOUDOUN COUNTY

TO:

File

FROM:

Gary N. Moore

DATE:

October 20, 1978

Stream flow=design flow of STP(0.086 mgd) Calculations from 11/16/78

(SYMINGE MERE) Loudoun but, - st. cours

部子田台

0.833 34 10.506 39 1 2014 Japai - ,06087 STREAM WASTITSALED (NECKTIVING STREAM) かとでたいいん OF BENJENDAM CAKEN CAREN WATENSHED いいろいろいと

THINGUEDAY . Sex .0108 = ,006 mgd y C BETON UNINOPPED 2 Flow from unusured TRIB to 2 mi Down Floor 1905 MOTERSHEW WATERS.IED ,0048 to Dy B. CHECK BEAUSTROAM

2.3% 37

6.916 391

5.00 Mg 1.124 Sp. TO NORTH MOST BELOW ONG BRANCH encey watersher

NEWTH PORT WATERSHED

0.007 uns/24 MM 1675 - 0.646 MED WOLCHT LOW Palemor Kins, Soction 1, cares III B (General most stead essen) 10 YEM / 7 ONY

X

. -- -----

(())		1				
	11	*	STREAM	ASSIM	ILATION	ANALYSIS
	10	W	efelució	5/ /	0460,	mial (
ctream:	,		1.			

e:			Criti	Topo Sheet: Critical Discharge Gauging Station:		
Computation Number Drainage Area	(9)		7 7.			
Stream temperature	2c	3,-	1, 30 /	30		
Saturation D O	7. (7,4	7.8	75.,		
D.O. Discharge K1 (carbonacious) Kn (nitrogenous)	1.1	2.6	2 1.7	4.7		
K ₁ (carbonacious)	.15	1 . 3	118			
Kn (nitrogenous)			12			
' (leaelation)	· .	(-		5		
Flow, mgd (discharge) BOD ₅ (discharge)	10/5	.02/	U/3	. ngé		
			20	3		
NOD _u (discharge		9	ž0	4		
Flow. mgd (stream) BOD ₅ (stream) NOD _u (stream) Length of segment (mi)	,~ ·			0259		
	5	12		.,		
		1 ' -		1.9		
	.5	2		.3		
Velocity of stream (fps)			2	-		
D.O. (allowable)		46,	97	5, 15		
D.O. (stream)		7,4		11.7		
<pre>\ D.O. from allowable (Redindicates violation) Flow (combined)</pre>	ils.	, P+1	7.0	.28		
	.0%);	. 1945	, more	. 12.6		
8005 decay 0 t)	2.7				
NUDu decay 0 t			,			
time, days		1097	7.6:	A 3 1 2		
D.O. @ t ("A" indicates		11.30	1/2.54	/ "		

Note: At the end of each segment, if critical D.O. has not been reached, the next stream segment should be analyzed. The parameter values determined @ time = t become the new "stream" data and new flows introduced to the stream (eg: tributaries. STP discharges, stretch flows) become the new "discharge" data. [1], Kn and K2 must be adjusted as necessary]

mad = (.646)cfs

Critical D.O.)

Reviewer:

Stream: ONE = 500	Date:
Discharge:	Topo Sheet: Critical Discharge:
	Gauging Station:

Computation Number	his 1 min	Mr. W. P.S	of Dealy.	GIAS 1. 17-12
Orainage Area				
Stream temperature	30	30	30	30
Saturation D.O	7.4	7,4	24	30
D.O. Discharge	6.8	6.8	6.8	6.8
K1 (carbonacious)	.//	.18	1 1/8	1/4
Kn (nitrogenous)		./.	1./	
K2 (reaeration)	5	5	5	<
Flow, mgd (discharge)	·CKe	, CK6	10312	,067
BOD ₅ (discharge)	30	ļ.:		2
NOD _u (discharge	20	 		7.
Flow, mgd (stream)	,0017	ron.	,/76	,2012
BOD ₅ (stream)	₩	19	6.3	5,6
NODu (stream)		37	20.	161
Length of segment (mi)	Name and Address of the Owner, where the Party of the Owner, where the Party of the Owner, where the Owner, which is the Owner, which is the Owner, where the Owner, which is the Owner, whi	7.	4.75	/
Velocity of stream (fps)	<u>J</u>	7.	/	/
D.O. (allowable)	-	5.5	6.6	6.6
D.O. (stream)	2.	2.4	6.73	5.51
\D.U. from allowable	1.6	,1321	,006	,07
(Redindicates violation)	, 0255	./76	. 2012	12752
Flow (combined)	'4	63	5.6	37
BOD5 decay @	31	~0	31	13
time, days	DIT2	.09%	.1059	,00 -
0.0. 0 t ("A" indicates	2.4	6.77	6.61	1.7

stream segment chould be analyzed. The parameter values determined time = t become the new "stream" data and new flows into duced to the stream (eg: tributinies, STP discharges, stretch flows) become the new "discharge" data.

[k1, kn and Kg must is adjusted as necessary]

1. 1 - v.úšercis

 115	wir:	

Stream: <u>Rangellan Ci</u>
Discharge: Francis Tens 9, V=2, 1

Topo Sheet: worden Critical Discharge:

Gauging Station:

Computation Number	LER TH	11 /12	10000 11
Drainage Area	was kr. Jum	and the second s	Off Booth
		sa.	
Stream temperature	30	30	30
Saturation D.O	7.4	7.4	7.4
D.O. Discharge	4.8	6.7	5.7
Ki (carbonacious)	. 118	.17.	,/8
K_n (nitrogenous)		_/	, /
K2 (reaeration)	5	5	
Flow, mgd (discharge)	,016	.00	,03/0.
BOD ₅ (discharge)	~ C	<u> </u>	2
NODu (discharge	~3		.2
Flow, mgd (stream)	,000	,0003	,/763
BOD ₅ (stream)		14	7
NUU _{II} (Stream)		37	<i>⊋</i> o
Length of segment (mi)	15	4.52	7
Velocity of stream (fps)	Ċ	2	
D.O. (allowable)		6.6	6.5
D.O. (stream)	2.6	7,0	4.8/
N.O. from allowable	2,4	.20~;	-,o=
(Redingicates violation)	000-	.1763	,2015
Flow (combined)	THE RESERVE THE PARTY OF THE PA	8.7	5
BOD5 decay @	THE RESERVE OF THE PERSON NAMED IN	٠.) نن	75.6
time, days	,0:-	,067.2	,795%
0.0. 0 t ("A" indicates	7.4	6.81	1 /-
Critical D.O.)			Λ.

Ci ali

stream segment should be analyzed. The paramotor values determined to the end become the new "stream" data and new flow fair during the stream liquid. butiries, STP discharges, stretch flows become the new "discharge" lata. [N]. We and My must be adjusted as necessary]

1941 " (.046,cts

· ...r: ____

Stream: 1- 201	19. 72.	/2	Commence success succession on the second succession of the second succ
Discharge: 7	Levie, 7	The 11 1/2	4.5

Date: 7/2

Topo Sheet:
Critical Discharge:
Gauging Station:

omputation Number	late for Str.	Mus IB. Din	Colo Por Im	Merici Boan	no or
rainage Area					in:
tream temperature	30	70	. 30	70	20
aturation D.O	7.4	2.4	7.4	7.4	7.4
.O. Discharge	6,8	6-8	4.2	6.2	64
(carbonacious)	,19	./8	.12	119	.17
n (nitrogenous)	./	./	/	./	
(reaeration)	5	5	1,	,	;7
low, mgd (discharge)	.086	. 086	1076	,086	.07/2
OD ₅ (discharge)	Qo	2	್ವಿ	2	2
ODu (discharge	40		26	7	7
low, mgd (stream)	10cd5	,0200	,0007	10003	,/76?
OD ₅ (stream)	2	19	2	19	8.2
OD _u (stream)	2,7	38	7	2/	11
ength of segment (mi)	. 7	2.2	.5	7.2	_7
elocity of stream (fps)			/	/	. 15
.O. (allowable))~	6.6	5	his	6.4
.O. (stream)	6.1	5, -7	5. F		61
D.O. from allowable	157	-,18	1.65	.01	.06
(Redindicates violation) low (combined)	,0903	./767	.0903	.1763	,2077
DD5 decay @	7.0	8.2	19	8.2	5.6
Dou decay 🗈 t	` <i>x</i>	97	2/	11	2.
ime, days	.07hz	1304	,0705	,755	,04/6
.O. 0 t ("A" indicates	4.57	642	6.65	6.61	611 1
Critical D.O.)		Vicialia.	せがて		6.66 A

...te: At the end of each regment, if pritical D.O. mas not been reached, the next stream segment should be analyzed. The parameter values determined @ time = t become the new "stream" data and new flows introduced to the stream (eg: tributaries, STP discharges, stretch (lows) become the new "discharge" data. [k], Kn and ky must le adjusted as necessary]

1 .1 - (.571 . . .

w.r:

Stream: Bouchan Gook Discharge: 7. 10 TKy = 2 1/2.5, 25

Topo Sheet: Critical Discharge: Gauging Station:

Computation Number	111 - 01	1, //	16.6. For T.	Tw	166 Boll 1
Computation Number Drainage Area	win for st	Tion PLOT	Critical Contraction	M. Boar	
brufflage Area					
Stream temperature	10	30	70	70	70
Saturation D.O	7. L	2.4	1, 4	7.4	7.4
D.O. Discharge	3.7	6.5	6.8	6.8	6.7
Ki (carbonacious)		.18	17	118	17.
(nitrogenous)		./	,/	,/	/
(reaeration)	. 5	5	5	5	5
Flow, mgd (discharge)	. 2. Y 2	.086	1086	.086	107/2
BOD ₅ (discharge)	20	7.	20	2	2
NODu (discharge	20	2	22	7.	,0)/2 2 .2
Flow, mgd (stream)	icus	,0001	, Co ()	, 00	,'^;a
BOD ₅ (stream)	7	10	2.	19	20
NOD _u (stream)	Z	39	2	2/ _	- :-
ength of segment (mi)	1 .5	23	1. ,-	2. 2	~
Velocity of stream (fps)	.5	. 1	1 15	,5	-2-
0.0. (allowable)	5	6	1 5	6.5	6.6
D.O. (stream)	5.7	5,57	6. 1	6.50	5 7
\D.O. from allowable	437	1-,3	1.52	-,03	,032
(Redindicates violation) Flow (combined)	, 5903	176	09:17	,7763	2:1-
30Ds decay @		7.0	19	7.9	
NODu decay 3 t		10	21	11	25-4 9-5
time, days	124	126	,06.	184.17	501 A
0.0. 0 t ("A" indicates	6.37	5.	6.37	6.57	2.0
Critical D.O.)		y 31.	77.	, ,	A ? .
		1 531 +		12 - 2	13:75
			N , 2:	y 5	, 5, ,

late: At the end of each segment, if critical 0.0, has not been reached, the next stream segment should be analyzed. The parameter values determined to time = t become the new 'stream" data and new flows introduced to the stream (eg: tributaries, STP discharges, stretch flows) become the new "discharge" data. [k], by and Kg must be adjusted as necessary!

mid = (.046)cfs

w r:____

Data.

"tream:

Computation Number	
Stream temperature 30 330 Saturation D.O. 7.4 7.4 D.O. Discharge 67 5.6 K1 (carbonacious) 78 77 Kn (nitrogenous) 78 77 K2 (reaeration) 5 5 Flow, mgd (discharge) 5 5 BOD5 (discharge) 79 79 NODu (discharge) 79 79 BOD5 (stream) 79 79 NODu (stream) 3 7 Length of segment (mi) 3 7 Velocity of stream (fps) 2 2 D.O. (allowable) 7.2 3.6	
Saturation D.O. 7.4 7.6 D.O. Discharge 67 5.6 K1 (carbonacious) 7.8 7 Kn (nitrogenous) 7.8 7 K2 (reaeration) 5 5 Flow, mgd (discharge) 5 6 BOD5 (discharge) 7 7 NODu (discharge) 7 7 BOD5 (stream) 7 7 NODu (stream) 2 2 Length of segment (mi) 3 7 Velocity of stream (fps) 2 2 D.O. (allowable) 7.2 3.6	
D.O. Discharge K1 (carbonacious) K2 (reaeration) Flow, mgd (discharge) NODy (discharge Flow, mgd (stream) Flow, mgd (str	
K1 (carbonacious)	
Kn (nitrogenous)	
Flow, mgd (discharge)	
BOD5 (discharge) 3 NODu (discharge) 3 Flow, mgd (stream) 3 BOD5 (stream) 9 NODu (stream) 3 Length of segment (mi) 3 Velocity of stream (fps) 2 D.0. (allowable) 7,2	
NODu (discharge 1977 197	
Flow, mgd (stream)	
Flow, mgd (stream)	
BOD5 (stream) 7 9 NODu (stream) 3 2 Length of segment (mi) 3 7 Velocity of stream (fps) 2 2 D.0. (allowable) 7,2 3,6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Length of segment (mi)37Velocity of stream (fps)22D.O. (allowable)7.23.6	
D.O. (allowable) 7.2 3.6	
D.O. (allowable) 7.2 3.6	
D.O. (stream) 7.4 2.4	
A D.O. from allowable 3.d16 .uu	
(Redindicates violation) coop in the	
Frow (combined)	
BODs decay 0 t 9 5.3 8.3 NODy decay 0 t 9	
NODy decay 0 t	-
6.0. 0 t ("A" indicates "	

acted At the end of each segment, if critical D.O. has not been reached, the next stream segment should be analyzed. The parameter values determined 9 time = t. become the new "stream" data and new flows introduced to the stream (eq: triputaries, STP discharges, stretch flows) become the new "discharge" data. [H]. Kn and Kg must be adjusted as necessary]

and = (1846 lets

1		-/
1	7,	/
1	11	

accure of TKN of 5mg/L = 20 UNOO

Stream:	Date:
Discharge:	<pre>Topo. Sheet:</pre>
	Critical Discharge:

		inst C.Lar.		
Computation Number	. 1	to Doorshi	Jin in	Cm Spir
rainage Area	•		3.	
tream temperature	. 30	30	30	Ìo
aturation D.O	7.4	7.4	7,0	74
.O. Discharge	6.7	6.8	0, 8	6.1
(carbonacious)	/7	./8	./8	.7
nitrogenous)	1	5	5	1,-
(reaeration)		.0587	103/2	
low, mgd (discharge)	· Control of the last of the l	70307	2	.068
BOD ₅ (discharge) NOD _u (discharge		2	2	2
	0.1-	. 09r I	1496	1798
low, mgd (stream) DD ₅ (stream)	•	13	9	7.0
DD _u (stream)	-	1 7	13	No
ength of segment (mi)	.5	3	1.75	1
elocity of stream (fps)		2	/	/
.O. (allowable)		6.6	0.0	\$.0
.O. (stream)	4,1	7.4	۶, ۲	-,74
D.O. from allowable	2.0	20	,14	.186
(Redindicates violation)		,1475	,/792	,2407
low (combined) DD5 decay @ t	. '0	2.	53	9.4
Du decay @ t			10.8	7.9
	2/72		./इस	34 .
time, days	200		6.04	2,70

O -

Note: At the end of each segment, if critical D.O. has not been reached, the next stream segment should be analyzed. The parameter values determined @ time = t become the new "stream" data and new flows introduced to the stream (eg: tributaries, STP discharges, stretch flows) become the new "discharge" data. [K1, Kn and K2 must be adjusted as necessary]

Reviewer:			

Stream:		Date:				
Dischar	ge:	Z =3a		Criti	Sheet: cal Discharge ng Station:	:
	Computation Number Drainage Area	: /	2		Mww/B.lan	
	Stream temperature Saturation D.O. D.O. Discharge K1 (carbonacious) K2 (reaeration) Flow, mgd (discharge) BOD5 (discharge) NODu (discharge) Flow, mgd (stream) BOD5 (stream) NODu (stream) Length of segment (mi) Velocity of stream (fps) D.O. (allowable) D.O. (stream)	6.8 .//5	70 70 30 18 18 17 37 20 20 19 20 31 20 31 32 40 51 51 51 51 51 51 51 51 51 51 51 51 51	30 7.4 68 ./8 ./ 5 .086 20 50 .0043 .2 .2 .2 .2 .2 .5	70 7.4 6.8 ./8 ./ ./ .086 2 2 .0903 ./9 ./7.5 3 2 6.6	
	△ D.O. from allowable		+.2 .'7'. 8 .5 .01'.	2.4 .0903 .73 .73.5 .0159 .7.4	,06 ./76 8.3 34.7 .09/6 5.36	
					Floir Mades	

Note: At the end of each segment, if critical D.O. has not been reached, the next stream segment should be analyzed. The parameter values determined @ time = t become the new "stream" data and new flows introduced to the stream (eg: tributaries, STP discharges, stretch flows) become the new "discharge" data. [K1, Kn and K2 must be adjusted as necessary]

Reviewer:	

STREAM ASSIMILATION ANALYSIS

Stream:			Date:	
Discharge:			TopoShee Critical Gauging S	Discharge:
Computation Number	000 100 31	(16,5) Fox (

Computation Number	000 100 31	(16.5 1) Fox (
Drainage Area]
Stream temperature	30			
Saturation D.O	Li'r			
D.O. Discharge	6.8			
K ₁ (carbonacious)	.19			
Kn (nitrogenous)	./q :/ 5			
K2 (reaeration)	0.7/2			
BOD ₅ (discharge)	2			
NODu (discharge	2			
	171	1 1		1 1
Flow, mgd (stream)	particular of particular sections of the particular section of the par			
BOD ₅ (stream)	24.7			
Length of segment (mi)	7.75			
Velocity of stream (fps)	1			
D.O. (allowable)	0.0	ļ	-	
D.O. (stream)	1, 3	 		-
A D O from alloughle	-0,/	1 1		
△ D.O. from allowable (Redindicates violation)				
Flow (combined)	0.2012			
	5.6 20.7			
NODu decay @ t	7.5.7	-		
time, days	,1069	 		
D.O. @ t ("A" indicates Critical D.O.)				

Note: At the end of each segment, if critical D.O. has not been reached, the next stream segment should be analyzed. The parameter values determined @ time = t become the new "stream" data and new flows introduced to the stream (eg: tributaries, STP discharges, stretch flows) become the new "discharge" data.

[K1, Kn and K2 must be adjusted as necessary]

Reviewer	

T. Jours	STREAM	ASSIMILATION	ANALY

SIS				
		7/20		

Stream: 7/10 20 com Theo	Date: 7/30
Discharge:	Topo Sheet:
	Critical Discharge: Gauging Station:

1-41 30

Computation Number	There was	inche in	011 0 00
Computation Number	Roccian Str.	Drg En.	and Dog BR.
brumage Area	1		
Stream temperature	.30	30	30
Saturation D.O.	2.4	7, 4	2.4
D.O. Discharge		6.8	6.8
K ₁ (carbonacious)	. 18	.18	./8'
K _n (nitrogenous)	./	,/	./
K2 (reaeration))	5	5
Flow, mgd (discharge)	. Oxo	.0583	.03/2
BOD ₅ (discharge)	30	2	2
NODu (discharge	20	7	2
Flow, mgd (stream)	.0043	0903	,1486
BOD ₅ (stream)	27	19	9
NODu (stream)		-2.5	29
Length of segment (mi)	. S	3	1.75
Velocity of stream (fps)	22	2	
D.O. (allowable)	22	n# V0	6.6
D.O. (stream)	1.7	7,4	6.6
Δ D.O. from allowable	1.d	O	/8
(Redindicates violation)	.0903	1476	1798
Flow (combined)			
BOD5 decay @ t	च्यु ₹	9	5.9
NODu decay @ t	THE RESERVE TO THE PERSON NAMED IN COLUMN	29	24
time, days	, 5/55	10916	./८६३
D.O. @ t ("A" indicates	1.4	6.6	0.42
Critical D.O.)	7	·	

Note: At the end of each segment, if critical D.O. has not been reached, the next stream segment should be analyzed. The parameter values determined @ time = t become the new "stream" data and new flows introduced to the stream (eg: tributaries, STP discharges, stretch flows) become the new "discharge" data. [K1, Kn and K2 must be adjusted as necessary]

Reviewer:		

2 Jamy 8 TKN o 6 8 may 100 well nood Adondown at abordones & the deadlones & the deadlones & the standard of deadlones & the thought of the light of Doll O kmol & boulge no ball and aslo Downg him at 10 ST de affluent of Smoll D.O. . Smoll De Mande on Strangle D.O. . . Smoll De Mande de de mollo de la mollo de de mollo de la mollo della mollo dell Continue on but well most S old Colelynos such E good thus yn such long 1400621877

Attachment 10

Date	Well Number	Hardness (mg/L)	Alkalinity (mg/L)	Ammonia (mg/L)	Chloride (mg/L)	Nitrate (mg/L)	Nitrite (mg/L)	COD (mg/L)	Spec Cond (umhos/cm)	TDS (mg/L)	E. coli (mpn/cmL)	TOC (mg/L)	pH (s.u.)	Temp (deg C)	Iron (mg/L)	
9/23/2015	1	Well	was	dry												
4/1/2015	1	84.8	41.6	ND	27.8	0.12	ND		211	173	<1	1.7	6.02		5.68	No COD results
8/21/2014	1	Well	was	dry												
3/19/2014	1	99	45.2	ND	36.3	0.72	ND	26	255	180	<1		6.2	8.6		No TOC results
9/18/2013 3/27/2013	1 1	Well	was	dry												
9/26/2012	1	Well	was	dry												
3/28/2012	1	Well	was	dry dry												
9/14/2011	1	Well	was	dry												
3/16/2011	1	71	32	ND	27	ND	ND	ND	270	160	<2	1	5.4	12.2		Fecal coliform
9/28/2010	1	Well	was	dry	-	11.5	11.70			200	-	-	3	12.2		r cear comorni
9/16/2009	1	Well	was	dry												
3/18/2009	1	Well	was	dry												
9/3/2008	1	Well	was	dry												
3/24/2008	1	150	30	ND	79	0.13	ND	71	450	270		5.2	6	11.4		No Bacteria results found in file
9/27/2007	1	Well	was	dry												
3/21/2007	1	88	38	ND	27	2	ND	ND	240	140	<1	ND	5.4	14.6		
9/23/2015	2	100	CO 2	ND	100	0.67				222		121527		V0.0000000	80276	
4/1/2015	2	198 162	68.3 60.8	ND ND	106	0.67	0.032	-1.02	508	401	<1	ND	6.23	15.7	13.9	
8/21/2014	2	244	71	ND	57.2 111	0.52	ND ND	ND	220 521	270 488	<1	ND	6.4	10.5	17.9	
3/19/2014	2	178	73.5	ND	88	0.53	ND	ND	396	322	2 <1	1.1	5.9 6.3	18.6 12.6		No TOStr-
9/18/2013	2	229	73.3	ND	122	0.53	ND	ND	517	396	<1	5.5	6.3	14.4		No TOC results Alkalinity inadvertently omitted
3/27/2013	2	190	100	ND	84	0.5	ND	ND	440	370	<1	1.1	6.1	14.4		No Temperature results
9/26/2012	2	240	76	<0.2	120	0.65	<0.02	25	630	420	3.1	1.5	6.2			No Temperature results
3/28/2012	2	200	74	ND	110	0.69	ND	ND	570	410	<1	0.89	7.1			No Temperature results
9/14/2011	2	240	72	ND	140	0.75	ND	ND	590	470	<1	0.94	5.9			No Temperature results
3/16/2011	2	190	68	ND	97	ND	ND	ND	540	350	<2	1.3	6	13.1		Fecal coliform
9/28/2010	2	160	65	ND	110	0.58	ND	ND	640	550	<2	1.4	6	14.3		
9/16/2009	2	520	64	0.24	150	1.1	0.005	ND	660	780	<2	ND	6.1	14.7		
3/18/2009	2	210	57	0.5	280	0.93	ND	ND	530	360	<2	1.1	6.1			
9/3/2008	2	220	66	0.2	110	0.75		ND	530	450	<2	ND	6.3	14.8		Nitrite not included on COA
3/24/2008	2	240	64	ND	83	0.53	ND	13	490	290		ND	6	13.3		No Bacteria results found in file
9/27/2007	2	240	64	ND	110	0.95	ND	ND	540	420	<1	ND	6.5			
3/21/2007	2	200	67	ND	66	0.8	ND	ND	420	310	<1	ND	5.8	13.8		
9/23/2015	3	166	117	ND	237	0.15	0.038	4.92	908	495	1	49.1	6.12	15.8	14.9	
4/1/2015		161	125	ND	179	0.15	ND		802	463	<1	1.9	6.47	15.0	28.8	No COD results
8/21/2014	3	151	127	ND	182	ND	0.065	ND	832	447	2	1.6	6.1	18.6	2010	TO COD TESAILS
3/19/2014	3	118	119	ND	159	0.12	ND	26	670	386	<1		6.4	12.3		No TOC results
9/18/2013	3	129		ND	172	0.077	0.038	38	724	429	<1	7.4	6.5	14.6		Alkalinity inadvertently omitted
3/27/2013	3	180	100	ND	140	0.073	0.014	ND	820	450	<1	1.6	6.3			No Temperature results
9/26/2012		130	130	< 0.2	180	0.07	0.02	42	870	440	<1	2.4	6.3			No Temperature results
3/28/2012		140	110	0.13	190	ND	ND	ND	940	480	<1	1.9	6.3			No Temperature results
9/14/2011		160	110	ND	210	ND	ND	ND	970	560	<1	1.8	6			No Temperature results
3/16/2011		140	100	ND	210	ND	ND	ND	890	430	<2	2.1	6.1	12.5		Fecal coliform
9/28/2010		170	120	ND	160	ND	ND	27	940	420	500	2.1	6.3	14.8		
9/16/2009		400	120	ND	250	ND	ND	ND	1100	460	4	1.6	6.2	14.7		
3/18/2009		200	110	ND	270	0.04	ND	ND	1100	610	<2	1.7	6.1	1900		
9/3/2008 3/24/2008		230	110	0.2	260	ND		ND	1300	790	2	ND	6.3	14.9		Nitrite not included on COA
9/27/2008		340 240	120 110	ND ND	310 290	ND ND	ND ND	11	1300	670	-1	1.5	6.1	12.6		No Bacteria results found in file
3/21/2007		170	58	ND ND	290	ND ND	ND	16 ND	1200 810	690 460	<1	2.1	6.3	12.2		
3/21/2007	3	1/0	36	NU	200	NU	NU	NU	810	460	1.3	ND	5.5	13.3		
9/23/2015	4	219	112	ND	151	0.53	ND	2.41	657	456	34.5	1.4	6.08	16.1	3.3	
4/1/2015	4	73	42.7	ND	39	1.3	ND	900000000000000000000000000000000000000	236	186	<1	1.4	6.47	::::::::::::::::::::::::::::::::::::::	0.94	No COD results
8/21/2014	4	207	84.6	ND	142	0.25	ND	ND	634	512	35.9	1.2	5.9	17.1		3 0.00 T 0.00 E TO C 2

3/27/2013 4 190 80 ND 60 0.092 ND ND 300 210 <1 1 5.7 No Tempero 9/26/2012 4 250 96 <0.2 170 0.05 <0.02 25 830 550 <1 2 6.1 No Tempero 3/28/2012 4 130 110 ND 160 ND ND ND ND 380 430 <1 0.94 5.9 No Tempero 9/14/2011 4 230 82 ND 170 ND ND ND ND 790 640 2 1 5.9 No Tempero 3/16/2011 4 54 20 ND 43 ND ND ND ND 790 640 2 1 5.9 No Tempero 3/16/2010 4 280 88 ND 170 ND ND ND ND ND 270 260 <2 1.3 5.4 11.3 Fecal colifor 9/16/2009 4 590 83 ND 190 ND ND ND ND ND ND 900 670 <2 1.4 6.2 15.2 9/16/2009 4 590 83 ND 190 ND	advertently omitted ature results ature results ature results ature results rm
9/26/2012 4 250 96 <0.2 170 0.05 <0.02 25 830 550 <1 2 6.1 No Tempera 3/28/2012 4 130 110 ND 160 ND ND ND ND 380 430 <1 0.94 5.9 No Tempera 9/14/2011 4 230 82 ND 170 ND ND ND ND 790 640 2 1 5.9 No Tempera 3/16/2011 4 54 20 ND 43 ND ND ND ND 270 260 <2 1.3 5.4 11.3 Fecal collifor 9/28/2010 4 280 88 ND 170 ND ND ND ND ND 900 670 <2 1.4 6.2 15.2 9/16/2009 4 590 83 ND 190 ND	ature results ature results ature results rm ncluded on COA
3/28/2012 4 130 110 ND 160 ND ND ND ND 380 430 <1 0.94 5.9 No Tempero 9/14/2011 4 230 82 ND 170 ND ND ND ND 790 640 2 1 5.9 No Tempero 3/16/2011 4 54 20 ND 43 ND ND ND ND 270 260 <2 1.3 5.4 11.3 Fecal colifor 9/28/2010 4 280 88 ND 170 ND ND ND ND ND 900 670 <2 1.4 6.2 15.2 9/16/2009 4 590 83 ND 190 ND ND ND ND ND ND 850 690 <2 0.8 6.1 14.6 3/18/2009 4 250 88 ND 65 0.05 ND ND ND 730 480 <2 1.9 6.2	ature results ature results rm ncluded on COA
9/14/2011 4 230 82 ND 170 ND ND ND 790 640 2 1 5.9 No Temper 3/16/2011 4 54 20 ND 43 ND ND ND ND 270 260 <2 1.3 5.4 11.3 Fecal colifor 9/28/2010 4 280 88 ND 170 ND ND ND ND ND 900 670 <2 1.4 6.2 15.2 9/16/2009 4 590 83 ND 190 ND ND ND ND ND 850 690 <2 0.8 6.1 14.6 3/18/2009 4 250 88 ND 65 0.05 ND ND 730 480 <2 1.9 6.2	ature results rm ncluded on COA
3/16/2011 4 54 20 ND 43 ND ND ND 270 260 <2 1.3 5.4 11.3 Fecal coliform 9/28/2010 4 280 88 ND 170 ND ND ND ND 900 670 <2 1.4 6.2 15.2 9/16/2009 4 590 83 ND 190 ND ND ND ND ND 850 690 <2 0.8 6.1 14.6 3/18/2009 4 250 88 ND 65 0.05 ND ND 730 480 <2 1.9 6.2	rm ncluded on COA
9/28/2010 4 280 88 ND 170 ND ND ND 900 670 <2 1.4 6.2 15.2 9/16/2009 4 590 83 ND 190 ND ND ND ND 850 690 <2 0.8 6.1 14.6 3/18/2009 4 250 88 ND 65 0.05 ND ND 730 480 <2 1.9 6.2	ncluded on COA
9/16/2009 4 590 83 ND 190 ND ND ND 850 690 <2 0.8 6.1 14.6 3/18/2009 4 250 88 ND 65 0.05 ND ND 730 480 <2 1.9 6.2	
9/16/2009 4 590 83 ND 190 ND ND ND 850 690 <2 0.8 6.1 14.6 3/18/2009 4 250 88 ND 65 0.05 ND ND 730 480 <2 1.9 6.2	
3/18/2009 4 250 88 ND 65 0.05 ND ND 730 480 <2 1.9 6.2	
	results found in file
9/27/2007 4 340 110 ND 170 ND ND ND ND 810 640 14 2.5 6.3	
3/21/2007 4 64 14 ND 12 0.23 ND ND 130 78 <1 ND 5.2 12.7	
9/23/2015 5 165 111 ND 219 1.9 ND 1.05 945 531 2 1.4 6.14 16 1.8	
4/1/2015 5 140 87.4 ND 192 1.2 ND 783 485 <1 3.1 6.4 1.35 No COD res	ults
8/21/2014 5 162 136 0.15 177 0.88 0.05 ND 781 500 6.3 1.7 6.4 18	
3/19/2014 5 124 104 ND 162 0.75 ND ND 714 415 <1 6.5 9.9 No TOC res	ults
9/18/2013 5 123 0.11 149 0.84 ND ND 701 403 <1 6 6.5 14.7 Alkalinity in	advertently omitted
	ature results
3/16/2011 5 150 110 ND ND ND ND ND ND 1000 510 <2 1.8 6.3 13.3 Fecal colifo	
9/28/2010 5 170 140 ND 140 0.18 ND ND 950 440 8 2.4 6.5 15.2	
9/16/2009 5 160 140 ND 210 0.46 ND ND 1100 650 <2 2.1 6.4 15.2	
3/18/2009 5 150 110 0.3 220 0.43 ND ND 1000 500 <2 2.3 6.1	
	included on COA
	results found in file
9/27/2007 5 260 120 ND 290 0.24 ND ND 1300 670 3 3.3 6.4	results round in me
3/21/2007 5 200 110 ND 290 0.19 ND ND 1100 590 2 1.1 6.1 14.2	
3/21/2007 3 200 110 110 200 0.15 110 110 1200 330 2 212 0.12 2112	
9/23/2015 6 198 137 0.19 243 0.034 ND 12.2 1074 573 14.5 2.5 6.25 16.6 9.01	
4/1/2015 6 132 69.5 ND 177 0.034 ND 745 443 <1 5.1 6.55 20.4 No COD res	ults
8/21/2014 6 170 138 0.16 184 0.05 0.05 ND 907 549 >2419.6 3.4 6.4 20	
3/19/2014 6 105 104 ND 162 ND ND 29 667 375 <1 6.6 7.5 No TOC res	ults
	advertently omitted
	ature results
3/16/2011 6 100 98 ND 200 ND ND ND 920 430 <2 4.5 6.4 8.4 Fecal colifo	
9/28/2010 6 170 100 ND 400 ND ND 20 1600 800 >1600 7.9 6.5 18.8	
9/16/2009 6 120 120 ND 260 ND ND ND 1100 570 80 3.1 6.5 17.8	
3/18/2009 6 150 100 ND 240 ND ND ND 1100 510 <2 4 6.6	
	included on COA
-//	results found in file
9/27/2007 6 200 110 ND 290 ND ND 16 1200 640 61 3.6 6.3	
3/21/2007 6 170 68 ND 250 ND ND 20 990 540 33 5 6.2 11.9	
3/21/2007 0 170 00 100 200 110 110 20 330 340 33 3 0.2 11.5	

Attachment 11

Public Notice - Environmental Permit

PURPOSE OF NOTICE: To seek public comment on a draft permit from the Department of Environmental Quality that will allow the release of treated wastewater into a water body in Loudoun County, Virginia.

PUBLIC COMMENT PERIOD: XXX, 2016 to XXX, 2016

PERMIT NAME: Virginia Pollutant Discharge Elimination System Permit – Wastewater issued by DEQ, under the authority of the State Water Control Board

APPLICANT NAME, ADDRESS AND PERMIT NUMBER: Loudoun County Sanitation Authority dba Loudoun Water, PO Box 4000, Ashburn, VA 20146, VA0062189

NAME AND ADDRESS OF FACILITY: St Louis WWTP, 22151 Newlin Mill Rd, Middleburg, VA 20117

PROJECT DESCRIPTION: Loudoun Water has applied for a reissuance of a permit for the public St Louis WWTP. The applicant proposes to release treated sewage wastewaters from residential areas at a rate of 0.086 million gallons per day into a water body. The facility proposes to release the treated sewage wastewaters in the unnamed tributary to Beaverdam Creek in Loudoun County in the Potomac River watershed. A watershed is the land area drained by a river and its incoming streams. The permit will limit the following pollutants to amounts that protect water quality: pH, BOD, Total Suspended Solids, Total Residual Chlorine, *E. coli*, Ammonia as N, and Dissolved Oxygen. The facility shall monitor without limitation the following parameters: Total Nitrogen, Total Kjeldahl Nitrogen, Nitrate+Nitrite, Total Phosphorus, Flow, Influent BOD and Influent TSS.

HOW TO COMMENT AND/OR REQUEST A PUBLIC HEARING: DEQ accepts comments and requests for public hearing by hand-delivery, e-mail or postal mail. All comments and requests must be in writing and be received by DEQ during the comment period. Submittals must include the names, mailing addresses and telephone numbers of the commenter/requester and of all persons represented by the commenter/requester. A request for public hearing must also include: 1) The reason why a public hearing is requested. 2) A brief, informal statement regarding the nature and extent of the interest of the requester or of those represented by the requester, including how and to what extent such interest would be directly and adversely affected by the permit. 3) Specific references, where possible, to terms and conditions of the permit with suggested revisions. A public hearing may be held, including another comment period, if public response is significant, based on individual requests for a public hearing, and there are substantial, disputed issues relevant to the permit.

CONTACT FOR PUBLIC COMMENTS, DOCUMENT REQUESTS AND ADDITIONAL INFORMATION: The public may review the draft permit and application at the DEQ-Northern Regional Office by appointment, or may request electronic copies of the draft permit and fact sheet.

Name: Alison Thompson

Address: DEQ-Northern Regional Office, 13901 Crown Court, Woodbridge, VA 22193

Phone: (703) 583-3834 E-mail: Alison.Thompson@deq.virginia.gov